Hybrid Concentration-Controlled Direct-Proportional Length-Based DNA Computing for Numerical Optimization of the Shortest Path Problem
نویسندگان
چکیده
DNA computing often makes use of hybridization, whether for vastly generating the initial candidate answers or amplification by using polymerase chain reaction (PCR). The main idea behind DNA computing approaches for solving weighted graph problems is that if the degree of hybridization can be controlled, then it is able to generate more double stranded DNAs (dsDNAs), which represent the answer of the problem during in vitro computation. Previously, length, concentration, and melting temperature, have been exploited for encoding of weights of a weighted graph problem. In this paper, we present a hybrid approach, which is called concentration-controlled direct-proportional length-based DNA computing (CCDPLB-DNAC), that combines two characteristics: length and concentration, for encoding and at the same time, effectively control the degree of hybridization of DNA. The encoding by length is realized whereby the cost of each path is encoded by the length of the oligonucleotides (oligos) in a proportional way. On the other hand, the hybridization control by concentration is done by varying the amount of oligos, as the input of computation, before the computation begins. The advantage is such that, after an initial pool generation and amplification, polyacrylamide gel electrophoresis (PAGE) can be performed to separate the survived dsDNAs according to their length, which directly decodes the results. The proposed approach shows significant improvement in term of materials used and scalability. The experimental results show the effectiveness of the proposed CCDPLB-DNAC for solving weighted graph problems, such as the shortest path problem.
منابع مشابه
Experimental Implementation of Direct-Proportional Length-Based DNA Computing for Numerical Optimization of the Shortest Path Problem
Bio-molecular or DNA computing has emerged as an interdisciplinary field that draws together chemistry, molecular biology, computer science, engineering, and mathematics. From DNA computing point of view, it has been proven that it is possible to solve weighted graph problems such as Traveling Salesman Problem (TSP) and the shortest path problem by exploiting some characteristics of DNA. Those ...
متن کاملConcentration-controlled Length-based Dna Computing for Weighted Graph Problems with Novel Readout Approach Using Real-time Pcr
DNA computing often makes use of annealing or hybridization, whether for vastly generating the initial candidate answers or amplification by using polymerase chain reaction. The main idea behind molecular search or DNA computing approaches for solving weighted graph problems is by controlling the degree of hybridization in order to generate more double stranded DNA, which represent the answer o...
متن کاملDirect-Proportional Length-Based DNA Computing for Shortest Path Problem
Deoxyribonucleic Acid or DNA computing has emerged as an interdisciplinary field that draws together chemistry, molecular biology, computer science, and mathematics. From the DNA computing point of view, it has been proven that it is possible to solve weighted graph problems by exploiting some characteristics of DNA such as length, concentration, and melting temperature. In this paper, we prese...
متن کاملFinding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms
The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...
متن کاملA New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets
A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006